- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huber, Daniel (2)
-
Jessen-Hansen, Jens (2)
-
Antoci, Victoria (1)
-
Bedding, Timothy R (1)
-
Chen, Xiaodian (1)
-
Deng, Licai (1)
-
Fredslund Andersen, Mads (1)
-
Grundahl, Frank (1)
-
Hey, Daniel R (1)
-
Lloyd, James (1)
-
Lund, Mikkel N (1)
-
Malla, Sai Prathyusha (1)
-
Montet, Benjamin T (1)
-
Mosumgaard, Jakob Rørsted (1)
-
Nissen, Poul Erik (1)
-
Palle, Pere L (1)
-
Silva Aguirre, Víctor (1)
-
Stello, Dennis (1)
-
Stokholm, Amalie (1)
-
White, Timothy R (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an in-depth analysis of the bright subgiant HR 7322 (KIC 10005473) using Kepler short-cadence photometry, optical interferometry from CHARA, high-resolution spectra from SONG, and stellar modelling using garstec grids, and the Bayesian grid-fitting algorithm basta. HR 7322 is only the second subgiant with high-quality Kepler asteroseismology for which we also have interferometric data. We find a limb-darkened angular diameter of 0.443 ± 0.007 mas, which, combined with a distance derived using the parallax from Gaia DR2 and a bolometric flux, yields a linear radius of 2.00 ± 0.03 R⊙ and an effective temperature of 6350 ± 90 K. HR 7322 exhibits solar-like oscillations, and using the asteroseismic scaling relations and revisions thereof, we find good agreement between asteroseismic and interferometric stellar radius. The level of precision reached by the careful modelling is to a great extent due to the presence of an avoided crossing in the dipole oscillation mode pattern of HR 7322. We find that the standard models predict a stellar radius systematically smaller than the observed interferometric one and that a sub-solar mixing length parameter is needed to achieve a good fit to individual oscillation frequencies, interferometric temperature, and spectroscopic metallicity.more » « less
-
Malla, Sai Prathyusha; Stello, Dennis; Huber, Daniel; Montet, Benjamin T; Bedding, Timothy R; Fredslund Andersen, Mads; Grundahl, Frank; Jessen-Hansen, Jens; Hey, Daniel R; Palle, Pere L; et al (, Monthly Notices of the Royal Astronomical Society)null (Ed.)ABSTRACT The study of planet occurrence as a function of stellar mass is important for a better understanding of planet formation. Estimating stellar mass, especially in the red giant regime, is difficult. In particular, stellar masses of a sample of evolved planet-hosting stars based on spectroscopy and grid-based modelling have been put to question over the past decade with claims they were overestimated. Although efforts have been made in the past to reconcile this dispute using asteroseismology, results were inconclusive. In an attempt to resolve this controversy, we study four more evolved planet-hosting stars in this paper using asteroseismology, and we revisit previous results to make an informed study of the whole ensemble in a self-consistent way. For the four new stars, we measure their masses by locating their characteristic oscillation frequency, νmax, from their radial velocity time series observed by SONG. For two stars, we are also able to measure the large frequency separation, Δν, helped by extended SONG single-site and dual-site observations and new Transiting Exoplanet Survey Satellite observations. We establish the robustness of the νmax-only-based results by determining the stellar mass from Δν, and from both Δν and νmax. We then compare the seismic masses of the full ensemble of 16 stars with the spectroscopic masses from three different literature sources. We find an offset between the seismic and spectroscopic mass scales that is mass dependent, suggesting that the previously claimed overestimation of spectroscopic masses only affects stars more massive than about 1.6 M⊙.more » « less
An official website of the United States government
